skip to main content


Search for: All records

Creators/Authors contains: "Brosnan, Sarah F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Human cooperation can be facilitated by the ability to create a mental representation of one’s own actions, as well as the actions of a partner, known as action co-representation. Even though other species also cooperate extensively, it is still unclear whether they have similar capacities. The Joint Simon task is a two-player task developed to investigate this action co-representation. We tested brown capuchin monkeys (Sapajus [Cebus] apella), a highly cooperative species, on a computerized Joint Simon task and found that, in line with previous research, the capuchins' performance was compatible with co-representation. However, a deeper exploration of the monkeys’ responses showed that they, and potentially monkeys in previous studies, did not understand the control conditions, which precludes the interpretation of the results as a social phenomenon. Indeed, further testing to investigate alternative explanations demonstrated that our results were due to low-level cues, rather than action co-representation. This suggests that the Joint Simon task, at least in its current form, cannot determine whether non-human species co-represent their partner’s role in joint tasks.

     
    more » « less
  2. Abstract

    Reciprocally patterned behavior is widespread in animals in the wild, but experimental evidence has been frustratingly inconsistent. Contrary to earlier contentions that this inconsistency is because reciprocity in non‐human species is a rare or fragile effect, recent authors have argued that the evidence suggests that reciprocity is widespread, that it often relies on cognitive mechanisms that are common across species, and is potentially an important factor in animals' daily lives. Another possible explanation for its apparent rarity, then, is that due to experimental studies' (intentionally) structured environment, they can lack the appropriate context to promote and support reciprocity. Focusing on outcomes from experimental reciprocal tasks in non‐human primates, I consider several factors that may be important, including the identity of the interactors and their relationship to one another, whether there is free choice of partners, whether the individuals are interacting directly, the timing of the interaction, the commodity involved, whether individuals have a reason to reciprocate, and the equity of the interaction. Clarifying the role of each of these factors will help improve experimental tasks and the social and ecological contexts that promote reciprocity.

     
    more » « less
  3. Free, publicly-accessible full text available May 1, 2024
  4. The origins of evolutionary games are rooted in both economics and animal behaviour, but economics has, until recently, focused primarily on humans. Although historically, specific games were used in targeted circumstances with non-human species (i.e. the Prisoner's Dilemma), experimental economics has been increasingly recognized as a valuable method for directly comparing both the outcomes of economic decisions and their underlying mechanisms across species, particularly in comparison with humans, thanks to the structured procedures that allow for them to be instantiated across a variety of animals. So far, results in non-human primates suggest that even when outcomes are shared, underlying proximate mechanisms can vary substantially. Intriguingly, in some contexts non-human primates more easily find a Nash equilibrium than do humans, possibly owing to their greater willingness to explore the parameter space, but humans excel at more complex outcomes, such as alternating between two Nash equilibria, even when deprived of language or instruction, suggesting potential mechanisms that humans have evolved to allow us to solve complex social problems. We consider what these results suggest about the evolution of economic decision-making and suggest future directions, in particular the need to expand taxonomic diversity, to expand this promising approach. This article is part of the theme issue ‘Half a century of evolutionary games: a synthesis of theory, application and future directions'. 
    more » « less
    Free, publicly-accessible full text available May 8, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Abstract

    Observed behavior can be the result of complex cognitive processes that are influenced by environmental factors, physiological process, and situational features. Pressure, a feature of a situation in which an individual’s outcome is impacted by his or her own ability to perform, has been traditionally treated as a human-specific phenomenon and only recently have pressure-related deficits been considered in relation to other species. However, there are strong similarities in biological and cognitive systems among mammals (and beyond), and high-pressure situations are at least theoretically common in the wild. We hypothesize that other species are sensitive to pressure and that we can learn about the evolutionary trajectory of pressure responses by manipulating pressure experimentally in these other species. Recent literature indicates that, as in humans, pressure influences responses in non-human primates, with either deficits in ability to perform (“choking”) or an ability to thrive when the stakes are high. Here, we synthesize the work to date on performance under pressure in humans and how hormones might be related to individual differences in responses. Then, we discuss why we would expect to see similar effects of pressure in non-humans and highlight the existing evidence for how other species respond. We argue that evidence suggests that other species respond to high-pressure contexts in similar ways as humans, and that responses to pressure are a critical missing piece of our understanding of cognition in human and non-human animals. Understanding pressure’s effects could provide insight into individual variation in decision-making in comparative cognition and the evolution of human decision-making.

     
    more » « less
  7. Abstract Humans often experience striking performance deficits when their outcomes are determined by their own performance, colloquially referred to as “choking under pressure.” Physiological stress responses that have been linked to both choking and thriving are well-conserved in primates, but it is unknown whether other primates experience similar effects of pressure. Understanding whether this occurs and, if so, its physiological correlates, will help clarify the evolution and proximate causes of choking in humans. To address this, we trained capuchin monkeys on a computer game that had clearly denoted high- and low-pressure trials, then tested them on trials with the same signals of high pressure, but no difference in task difficulty. Monkeys significantly varied in whether they performed worse or better on high-pressure testing trials and performance improved as monkeys gained experience with performing under pressure. Baseline levels of cortisol were significantly negatively related to performance on high-pressure trials as compared to low-pressure trials. Taken together, this indicates that less experience with pressure may interact with long-term stress to produce choking behavior in early sessions of a task. Our results suggest that performance deficits (or improvements) under pressure are not solely due to human specific factors but are rooted in evolutionarily conserved biological factors. 
    more » « less
  8. Visual attention to facial features is an important way that group-living primate species gain knowledge about others. However, where this attention is focused on the face is influenced by contextual and social features, and emerging evidence in Pan species suggests that oxytocin, a hormone involved in forming and maintaining affiliative bonds among members of the same group, influences social attention as measured by eye gaze. Specifically, bonobos tend to focus on conspecifics’ eyes when viewing two-dimensional images, whereas chimpanzees focus more on the edges of the face. Moreover, exogenous oxytocin, which was hypothesized to increase eye contact in both species, instead enhanced this existing difference. We follow up on this to (1) determine the degree to which this Pan pattern generalizes across highly social, cooperative non-ape primates and (2) explore the impact of exogenously administered vs. endogenously released oxytocin in impacting this behavior. To do so, we tracked gaze direction on a computerized social categorization task using conspecific faces in tufted capuchin monkeys ( Sapajus [Cebus] apella ) after (1) exogenously administering intranasal oxytocin using a nebulizer or (2) inducing an endogenous increase in oxytocin using fur-rubbing, previously validated to increase oxytocin in capuchins. Overall, we did not find a general tendency in the capuchins to look toward the eyes or mouth, but we found that oxytocin was related to looking behavior toward these regions, albeit not in a straightforward way. Considering frequency of looking per trial, monkeys were more likely to look at the eye region in the fur-rubbing condition as compared to either the saline or exogenous oxytocin conditions. However, in terms of duration of looking during trials in which they did look at the eye region, monkeys spent significantly less time looking at the eyes in both oxytocin conditions as compared to the saline condition. These results suggest that oxytocin did not necessarily enhance eye looking in capuchins, which is consistent with the results from Pan species, and that endogenous and exogenous oxytocin may behave differently in their effect on how social attention is allocated. 
    more » « less
  9. Non-invasive health monitoring is advantageous for wild and captive primate populations because it reduces the need for traditional invasive techniques (i.e., anesthetization) that can be stressful and potentially harmful for individuals. The biomarker neopterin is an emerging tool in primatology to measure immune activation and immunosenescence, however, most neopterin studies have focused on catarrhine species with little comparative work examining neopterin and health in platyrrhines. To address this gap, we validated a commercially available enzyme-linked immunosorbent assay (ELISA) to measure urinary neopterin in two types of capuchin monkeys, a wild population of white-faced capuchins ( Cebus imitator ) and a socially housed captive colony of tufted capuchins ( Sapajus apella ). We analytically validated methods for measuring urinary neopterin in two capuchin populations and demonstrated that two commonly-used methods to control for urine concentration—creatinine and specific gravity (SG)—produced highly concordant results. We also biologically validated these methods by examining variation in neopterin levels based on environment (captive and wild) and age, and changes in levels associated with immune-response. We found that neopterin increased after immune perturbation (rabies vaccine booster), varied by environmental condition, and mirrored expected trends in immune system ontogeny. Our results improve understanding of the innate immune system in platyrrhine species and suggest neopterin may be useful for non-invasive health monitoring in both captive and wild primates. 
    more » « less